Essential dimension of group schemes over a local scheme
نویسندگان
چکیده
منابع مشابه
GENERALIZED GORENSTEIN DIMENSION OVER GROUP RINGS
Let $(R, m)$ be a commutative noetherian local ring and let $Gamma$ be a finite group. It is proved that if $R$ admits a dualizing module, then the group ring $Rga$ has a dualizing bimodule as well. Moreover, it is shown that a finitely generated $Rga$-module $M$ has generalized Gorenstein dimension zero if and only if it has generalized Gorenstein dimension zero as an $R$-module.
متن کاملA scheme over quasi-prime spectrum of modules
The notions of quasi-prime submodules and developed Zariski topology was introduced by the present authors in cite{ah10}. In this paper we use these notions to define a scheme. For an $R$-module $M$, let $X:={Qin qSpec(M) mid (Q:_R M)inSpec(R)}$. It is proved that $(X, mathcal{O}_X)$ is a locally ringed space. We study the morphism of locally ringed spaces induced by $R$-homomorphism $Mrightar...
متن کاملLocal Cohomology and Gorenstein Injective Dimension over Local Homomorphisms
Let φ : (R, m)→ (S, n) be a local homomorphism of commutative noetherian local rings. Suppose that M is a finitely generated S-module. A generalization of Grothendieck’s non-vanishing theorem is proved for M (i.e. the Krull dimension of M over R is the greatest integer i for which the ith local cohomology module of M with respect to m, Hi m(M), is non-zero). It is also proved that the Gorenstei...
متن کاملRamification theory of schemes over a local field
We introduce the Swan class of an -adic etale sheaf on a variety over a local field. It is a generalization of the classical Swan conductor measuring the wild ramification and is defined as a 0-cycle class supported on the reduction. We establish a Riemann-Roch formula for the Swan class. Let K be a complete discrete valuation field of characteristic 0. We assume that the residue field F is a p...
متن کاملCohomology of Finite Group Schemes over a Field
A finite group scheme G over a field k is equivalent to its coordinate algebra, a finite dimensional commutative Hopf algebra k[G] over k. In many contexts, it is natural to consider the rational (or Hochschild) cohomology of G with coefficients in a k[G]-comodule M . This is naturally isomorphic to the cohomology of the dual cocommutative Hopf algebra k[G] with coefficients in the k[G]-module ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2017
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2017.07.023